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Abstract

I examine the lasting impact of productivity shocks on technological adoption using a
model where firms, which face heterogeneous fixed costs for implementing and operating
a technology, must decide whether to adopt or abandon it after an unexpected produc-
tivity shock. Due to complementarity in the production of the final good, individual
technological choices are interlinked, thereby amplifying and prolonging the effects of
large shocks. By merging international cross-country data from three databases and
employing a local projections method designed to detect non-linearities without relying
on any a priori functional form assumptions, I find that the estimates align closely with
the model’s predictions. A simplified version of the model, calibrated to match the
empirical estimates, reveals that subsidizing the operational costs of the technology leads
to welfare improvements by averting harm to the economy’s productive potential.
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1 Introduction

The adoption of new technologies is a fundamental driver of economic growth (Parente and
Prescott, 2002). Can this process be disrupted by temporary shocks? In this paper, I argue
that the transition from innovation to widespread usage can be vulnerable to large temporary
productivity shocks. The argument is as follows. First, if conditions are sufficiently adverse,
it can be in a firm’s best interest to temporarily or indefinitely abandon a costly technology if
the expected benefits from operating it fall short of its costs. In such situation, a firm might
choose to abandon a technology that has not been driven into obsolescence, even if it plans to
adopt again in the future. While historical examples demonstrate non-obsolete technologies
can be abandoned due to their costly operation,1 it is important to emphasize that complete
abandonment is not a prerequisite for the argument put forth here. For abandonment to
have meaningful aggregate effects, it is only necessary for some—and not all—firms to stop
operating the technology after a negative shock. Second, the technological choices of firms
become interconnected when their outputs are subject to demand complementarities among
each other. This means that when a particular producer adopts an increasing returns to
scale technology, it raises demand for the products of other firms due to complementarity
in the production of the final consumption good, thereby boosting incentives for them to
also adopt the same technology.2 In this setting, large productivity shocks, both positive
and negative, can have lasting effects on the economy’s distance to the technological frontier,
while small shocks have no impact. This framework is similar to models of the ‘Big Push’
(such as Murphy et al., 1989), in which in which if a sufficient mass of firms adopts, they can
trigger a permanent increase in output, even though individual firms may find it unprofitable
to adopt independently. By allowing firms to abandon the technology, I apply the same logic
to the case of negative shocks raising the possibility of a ‘Big Pull’, in which large negative
shocks can bring the economy further away from the technological frontier.

To formalize the argument, I construct a model where intermediate input producers
have the option to respond to a temporary and unexpected aggregate productivity shock
by adopting or abandoning a new technology, with a traditional alternative as the outside
option. Both the initial implementation and the continued operation of the modern technology
entail paying fixed costs, which imply increasing returns to scale, and are heterogeneous
across firms. On a first stage, I analyze the problem of the intermediate variety producer,
deriving optimal prices and quantities given a technological choice. Relative to firms using
the traditional production method, those operating the more productive technology will

1For example, supersonic airliners after the 1973 oil shock. See Appendix A for further details.
2Some evidence documenting complementarity in Korean firms’ technology adoption decisions can be found

in Choi and Shim 2022
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have a lower marginal cost, lower prices, and will produce a higher quantity of their good.
Then, using the first stage as an input, I characterize the problem of choosing between the
more productive—but costly—modern technology, and the less productive free traditional
alternative. Specifically, adopting the new technology entails paying a fixed adoption cost in
the first period when the firm decides to implement it into production, and a continuation
cost in every subsequent period in which it chooses to keep operating it. The adoption
cost is assumed to be higher than the continuation cost, reflecting a situation in which
replacing the traditional production method necessitates of substantial expense, owing to
replacing outdated equipment with the more advanced alternative, coupled with the need for
supplementary investments during the initial phases to fully exploit the advantages inherent
in the new technology (Brynjolfsson et al., 2021). Choosing between the two alternatives
entails comparing two affine functions of the productivity shock, one corresponding to the
new technology having a higher slope and a lower intercept than the one corresponding to the
traditional production method. Thus, the optimal adoption-abandonment policy is expressed
in terms of the realization of the aggregate productivity shock for which the firm is indifferent
between the status quo and the corresponding outside option (i.e., the point in which a
firm not using the technology is indifferent between adopting and staying out, and the point
in which a firm using the technology is indifferent between abandoning it and staying in).
These two indifference points correspond to two thresholds, one for adoption and another
for abandonment, where the former is higher than the latter. As a result, when the shock is
large and positive, marginal cost falls, incentivizing them to pay the adoption cost in order to
take advantage of economies of scale to increase profits. More importantly, when the shock is
large and negative, marginal cost increases, and the firm can reduce average cost and raise
prices (and profits) by abandoning the technology. The region between the two thresholds
constitutes a “band of inaction”, inside of which the magnitude of the shock is not enough to
induce a change in the firm’s technological choice. Just as in the case of an individual firm,
the aggregate level of technological adoption will be impacted by large shocks only, while
small shocks have no effect.

To test if the data supports the argument formalized by the model, I estimate the
relationship between total factor productivity shocks and long-run changes in technological
adoption, by combining non-parametric methods with local projections. As the goal is
estimating this relationship in the medium and long-run, I rely on aggregate data merged from
three historical databases, focusing on 15 technologies in 18 countries, for the period 1890-2002.
The long time dimension of this technology-country panel maximizes data span, and thus the
statistical power of the results. Importantly, while it is possible to study non-linearities in
impulse responses using alternative approaches (e.g., stratified local projections as in Cloyne
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et al., 2023), they require specifying a particular functional form to model the non-linearity.
However, in the application discussed here, specifying a functional form implies determining a
priori which shocks are large and which are small. Also, the true relationship implied by the
data generating process may be far from the selected specification, potentially introducing
misspecification bias. Thus, in order to use a more flexible approach, I estimate the response
of technological adoption to a productivity shock by semi-nonparametric local projections
(following and approach similar to that of Baltagi and Li, 2002). This method entails replacing
the linear term corresponding to the impulse variable in a Jordà (2005) local projection by
a non-specified function, to be estimated non-parametrically, while controls remain linear.
Results suggest that the non-linearities in the data match those predicted by the model. That
is, both the Big Push and the Big Pull are present in the data, and this effect appears is
driven by the subset of technologies requiring higher capital costs, that take the form of large
sunk costs in their early stages.

Finally, in a simplified version of the model, I evaluate the potential welfare gains from
subsidizing the cost of continuing to operate the modern technology in the presence of a
negative shock. Unlike the decentralized economy, this policy can mitigate coordination
failures after large negative shocks, stemming from firms not internalizing the impact of
their technology choices on other firms. While this policy does not improve welfare for small
shocks relative to the decentralized economy, it does so for large shocks. Moreover, gains are
increasing on the size of the shock and are particularly high for the largest episodes, in which
some firms re-adopt the technology, incurring high re-implementation costs.

My paper makes four contributions to two strands of economic literature; works on the
relationship between business cycle events and long-term economic developments, and the
literature on the estimation non-linearities in impulse responses using local projections. First,
by introducing the possibility of technology abandonment within a Big Push model (i.e.,
Murphy et al., 1989), I reveal the potential occurrence of a Big Pull, where a large negative
shock leads the economy to a lower output equilibrium due to a decrease in the use of a costly
technology. This observation draws parallels between research employing Big Push models
to explain productivity disparities among countries3 (e.g., Buera et al., 2021) and studies
linking sustained drops in productivity following financial crises to shortfalls in technological
adoption expenditures (e.g., Anzoategui et al., 2019). Second, I provide empirical evidence
of enduring increases in technology adoption following positive shocks, a phenomenon often
termed reverse hysteresis. While most previous empirical work identified persistent impacts
only in the case of negative shocks (Jordà et al., 2020; Amador, 2022; Aikman et al., 2022),

3Also, it is related to works linking firms’ entry and exit into productivity enhancing activities to aggregate
growth (e.g., Caunedo and Yurdagul, 2019).
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my findings shed light on the less-explored positive shock scenario.4 Third, I introduce
a semi-nonparametric local projection method, offering several advantages for estimating
non-linearities in impulse responses. This method refrains from imposing a specific functional
form on non-linearities, requiring fewer assumptions than alternative approaches (e.g., Cloyne
et al., 2023) and mitigating potential misspecification biases. Moreover, through the use of a
non-parametric estimator, I circumvent substantial biases that often arise in state-dependent
local projection methods when estimating responses to large shocks, which are frequently used
to study non-linearities (Gonçalves et al., 2023). And fourth, my research contributes to policy
debates concerning responses to economic downturns with potential lasting impacts. This
work provides valuable insight for policymakers, by demonstrating that significant welfare
gains can be achieved through policies aimed at preventing harm to the economy’s productive
potential.

This paper is related to the literature on the relationship between the cycle and the trend,
to works on the long-run impact of temporary shocks, and to models interpreting output
fluctuations as coordination failures. Each of these bodies of work will be briefly described in
turn.

The relationship between the cycle and trend: The long-run impact of temporary
shocks has often been referred to as hysteresis. One of the early uses of this term in the context
of the relationship between the cycle and the trend can be found in Blanchard and Summers
(1986). This work hypothesized that persistently high unemployment after recessions in
post-war Europe was due to hysteresis effects arising from labor market frictions. Following
King et al. (1988) and Stadler (1990), several papers show how, in endogenous growth models,
shocks that temporarily disrupt the growth process can have permanent effects on output.
The pro-cyclicality of growth-enhancing variables such as investment, R&D, and technological
adoption has been often interpreted as evidence in favor of this view (e.g., Comin and Gertler
2006; Anzoategui et al. 2019; Benigno and Fornaro 2018; Bianchi et al. 2019; Garga and Singh
2021; Elfsbacka Schmöller 2022; Ma and Zimmermann 2023). A comprehensive review of this
literature can be found in Cerra et al. (2023).

Empirical evidence on the long-run impact of temporary shocks: Cerra and
Saxena (2005) provide evidence on the permanent impact of shocks on the level of output.
Similarly, Blanchard et al. (2015) show how roughly two thirds of all recessions have been
followed by lower output, and even lower growth. A growing literature has emerged on this
topic, highlighting the presence of asymmetries and non-linearities (a review can also be found
in Cerra et al., 2023). Employing a panel of 24 advanced and emerging economies since 1970,
Aikman et al. (2022) find a non-linear and asymmetric relationship between various business

4An exception can be found in Girardi et al. (2020)
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cycle events and growth in the long-run. In particular, they detect strong scarring effects
originated in contractions below the 20th percentile of the distribution of annual growth rates.
In the case of identified monetary policy shocks, Jordà et al. (2020) also find asymmetric
effects on GDP, persisting after more than a decade. In their sample, spanning 125 years and
17 advanced economies, they attribute this phenomenon to a decreased capital stock, and
lower total factor productivity. Employing the same identification strategy, I show in Amador
(2022) how technological adoption and human capital are only affected in the long-run by
contractionary monetary policy. These works add important detail to a growing empirical
literature revealing hysteresis effects from a variety of shocks (e.g., Furlanetto et al. 2021;
Antolin-Diaz and Surico 2022; Cloyne et al. 2022).

Output fluctuations as coordination failures: This paper is related to two different
strands of literature using coordination failures as the source of aggregate fluctuations. First,
the Big Push proposed by Rosenstein-Rodan (1943), in which an economy can experience
a permanent increase in output if a sufficient mass of firms adopts a new, more productive
technology. This view emphasizes the role of coordination failures and complementarities in
adoption, as individual firms may not find it profitable to adopt a new technology unilaterally,
even though the whole economy would benefit from a coordinated adoption (see also Murphy
et al. 1989; Ciccone 2002; Buera et al. 2021). Second, at least since Diamond (1982) a
literature emerged characterizing recessions as coordination failures (Kiyotaki, 1988; Cooper
and John, 1988; Durlauf, 1991; Schaal and Taschereau-Dumouchel, 2015). Typically these
models feature multiple rational expectations equilibria, stemming from increasing returns
to scale (e.g., Kiyotaki 1988), and strategic complementarities (e.g., Cooper and John 1988).
Two contributions are particularly close to this paper. First, Bilbiie et al. (2012), who
provide a model of fluctuations with monopolistic competition and endogenous producer
entry, subject to sunk costs. Unlike the model presented in this paper, they do not include
producer heterogeneity and firm exit is exogenous. As Ghironi (2018) points out, these
choices imply that the model can be solved using a log-linear approximation, at the cost
of not featuring long-run impacts from temporary shocks (i.e., hysteresis). Second, Schaal
and Taschereau-Dumouchel (2015), who develop a theory based on coordination failures that
accounts for large shocks pushing the economy into quasi-permanent recessions. The key
mechanism for their result is demand complementarities, which provide a coordination motive,
and feedback from aggregate demand to production decision originated in variable capacity
utilization.
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2 Model

In this section, I introduce the model and some results derived from it. First, I describe
the setting and agents. Next, I focus on the features of the technological choice problem
of individual intermediate input producers. This problem is solved sequentially. That is,
conditional on a choice of technology, prices and quantities are derived. Then these prices and
quantities are used to compare profits under the relevant alternatives. The optimal policy will
be to adopt a the costly technology when the productivity shock is high, and to abandon it
when is low. However, this will only be the case for sufficiently large shocks, as small shocks
cannot trigger a change in the firm’s technological choice. Finally, I define equilibrium, and
characterize the effects of productivity shocks on aggregate technological choices.

2.1 Setting

Time is discrete and goes on forever. The economy is composed of a representative household,
a final consumption good representative firm, and an intermediate goods sector. Each
intermediate good producer is a monopolist of their own variety, and there is an unit mass
of them. They purchase inelastically supplied labor from the household. Importantly,
intermediate producers choose whether to operate in the modern sector, using a new more
productive technology with increasing returns to scale, or in the traditional sector, where
they use a less productive constant returns to scale technology. The modern sector exhibits
increasing returns to scale due to the fact that each firm has to pay a fixed adoption cost j in
the period they enter use the modern sector technology, and a fixed continuation cost k every
period they remain operating it. These costs are heterogeneous across firms, and have to be
paid in units of the final good. Firms in the modern sector have the option to abandon the
new technology, and use the traditional alternative instead. Both the traditional and modern
intermediate producers are subject to an unexpected aggregate autoregressive productivity
shock occurring only in period one. A constant elasticity of substitution aggregator combines
all intermediate inputs into a final consumption good. Profits from the sale of intermediate
inputs go to the household.

2.2 Households

The preferences of the representative household are given by

7



∞∑
t=0

βtCt,

where β ∈ (0, 1) is the discount factor, Ct ≥ 0 is consumption of the final good. Since there is
no disutility from labor, one unit of labor is inelastically supplied every period Lt = 1, ∀t.
The household takes prices as given, and it faces the following sequence of budget constraints

PtCt = Wt + Πt,

where Pt is the price of the final good, Wt the wage rate, and Πt the profits it receives from
intermediate firms.

2.3 Final goods producers

The final consumption good is produced by a perfectly competitive representative firm, that
combines a continuum of differentiated intermediate goods using a constant elasticity of
substitution production function

Yt =

∫
k

∫
j

[yt (j, k)]
σ−1
σ djdk

 σ
σ−1

,

where each variety is indexed by the pair (j, k). The pair (j, k) identifies intermediate input
producers that—as explained below—are identical in every way except for their adoption cost
j, and their continuation cost‚ k, which are heterogenous across firms. Thus, it is convenient
to index intermediate inputs with (j, k). Accordingly, yt (j, k) is the input of variety (j, k) used
in the production of the final consumption good Yt in period t. The elasticity of substitution
between intermediate input varieties is denoted σ > 2. Profit maximization taking Pt and
pt (j, k) as given yields the usual demand curve for each variety, and price for the final good;

yt (j, k) =

(
pt (j, k)

Pt

)−σ
Yt (1)

Henceforth, the final consumption good will be the numéraire (i.e., Pt = 1).
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2.4 Intermediate goods producers

Firms in the intermediate sector can choose to operate using a constant returns to scale
traditional (T for shorthand) technology or a more productive modern (abbreviated asM)
technology with increasing returns to scale. If a traditional firm decides to modernize in
t, it will have to pay a fixed adoption cost j, and a continuation cost k every subsequent
period, as long it continues to operate in the modern sector. Both j and k are denoted in
units of the final good.5 I assume that j > k, a situation in which replacing the traditional
technology entails substantial upfront costs and supplementary investments in the early stages
of adoption. The resources used to pay for j and k are in units of the final consumption
good, and are not used for any other purpose. As mentioned before, both the adoption and
continuation costs are heterogeneous across firms, and their joint density is denoted δ (j, k).
Since firms within each sector are identical in every way, except for their technological costs,
it is convenient to index them using (j, k). Let γt (j, k) = 1 if firm (j, k) is operating in the
M-sector (and using the new technology), and γt (j, k) = 0 if the firm is operating in the
T -sector (and using the traditional technology). The production function of intermediate
good firm (j, k) is given by

yt (j, k) =

exp (εt)Alt (j, k) if γt (j, k) =1

exp (εt) lt (j, k) if γt (j, k) = 0
, (2)

where yt (j, k) is the output of firm (j, k), and lt (j, k), it’s corresponding labor input. Regard-
less of their technology, all firms are subject to an unexpected autoregressive productivity
shock, which occurs once in period t = 1, such that εt = ψtε1, where ε1 ∼ N (0, νε) ∀t ≥ 1,
and ψ ∈ (0, 1). If the firm operates in theM-sector then it has a higher productivity than
if it did in the T -sector, as A > 1. Intermediate producers take the wage Wt as given.
Given a technological choice s ∈ {T ,M}, firms maximize gross profits (i.e., before paying
technological costs, j or k);

πst (j, k) = max
yst (j,k),p

s
t (j,k),l

s
t (j,k)

pst (j, k) yst (j, k)−Wtl
s
t (j, k) (3)

subject to demand curve (1) and production technology (2). Note that, as fixed costs do not
affect marginal decisions, prices and quantities will be independent of j and k. Moreover,
within each sector prices and quantities will be the same across all firms.

5The timing of events is the model is (i) intermediate firms choose their technology, prices, and quantities,
(ii) the final good is produced, and (iii) the intermediate sector firms purchase j or k units of the final good
(if applicable).
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Proposition 1. (Within sector symmetry of prices and quantities): Prices, pst (j, k), and
quantities, yst (j, k), will be symmetric across all firms in each sector s ∈ {T ,M}.

The proof (which can be found in Appendix B) follows from the fact that, conditional on
demand and technological choices, firms choose the price that maximizes gross profits (i.e.,
before paying j or k, if applicable). As prices, and quantities are proportional to marginal
cost, they depend only on parameters, aggregate quantities, and the aggregate productivity
shock εt. Thus, all firms within each sector, T and M, will be symmetrical in prices and
quantities. We can ignore the subindices j and k, and prices and quantities in each sector can
be written as;

pTt =
σ

σ − 1

Wt

exp (εt)
,

pMt =
σ

σ − 1

Wt

Aexp (εt)
,

yTt =

(
σ

σ − 1

Wt

exp (εt)

)−σ
Yt,

yMt =

(
σ

σ − 1

Wt

Aexp (εt)

)−σ
Yt.

Note firms operating theM-sector technology take advantage of their higher productivity
to sell more of their variety, and at a lower price than firms in the T -sector.

2.5 Choice of technology

Proposition 1 implies that given a value of the autoregressive shock εt, wagesWt and aggregate
demand Yt, the firm’s problem can be reduced to choosing which technology to operate. First,
note that by replacing prices, quantities, and Equation (2) in (3), and by Proposition 1, it
follows that profits in the traditional sector are given by

πTt =
(σ − 1)σ−1

σσ

(
exp (εt)

Wt

)σ−1
Yt. (4)

Note πTt depends on Yt. This implies that there is feedback from aggregate demand in
adoption decisions. That is, the adoption of the technology by one individual firm implies it
will produce a higher quantity of their variety. Due to complementarity, this also increases
demand for the products of other firms, increasing their profits, and (as shown below) the
likelihood that others will adopt as well.
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Equation (4) can be further simplified, using labor market clearing, so that it is only a
function of the productivity shock and the share of firms operating in theM-sector.

Proposition 2. : Profits in the traditional sector, πTt , can be written as a function of εt and
mt only. In particular;

πTt =
exp (εt)

σ

[
mtAσ−1 + (1−mt)

] 2−σ
σ−1 (5)

A proof of Proposition 2 can found in Appendix B. Equation (5) exhibits some interesting
properties. First, profits in the T -sector are independent of technological costs, which means
all firms in that sector make the same profits (from Proposition 1). Second, πTt depends
on the weighted average of the labor productivities of firms in the M and T sectors (i.e.,
exp (εt) [mtAσ−1 + (1−mt)]). Third, πTt is decreasing inmt, as σ > 2. This can be interpreted
as follows. Adopting the new technology induces firms to produce a higher quantity and sell
at lower prices. Because intermediate inputs are substitutable among among each other, a
higher adoption share lowers profits for all firms, as adopters take market share away from
higher priced firms in the T -sector.

Similarly, the profits of firms using the M-sector technology can also be written as a
function solely depending on εt and mt. Note profits in theM-sector net of technological
costs, denoted πMt (j, k), are given by

πMt (j, k) =

pMt yMt −Wtl
M
t − j if γt (j, k) = 1 and γt−1 (j, k) = 0

pMt y
M
t −Wtl

M
t − j if γt (j, k) = 1 and γt−1 (j, k) = 1

.

As in the case of profits in the T -sector, replacing prices, quantities, using Equation (2), and
by Proposition 1, it follows that profits for firm (j, k) are given by

πt (j, k) =


Aσ−1πTt − j if γt (j, k) = 1 and γt−1 (j, k) = 0

Aσ−1πTt − k if γt (j, k) = 1 and γt−1 (j, k) = 1

πTt if γt (j, k) = 0

. (6)

Equation (6) highlights the key forces that determine technological choices. As the firm can
either start in one sector or the other (either γt−1 (j, k) = 0 or γt−1 (j, k) = 1). To maximize
profits, the firm compares two functions of the productivity shock; one corresponding to
T -sector profits, and another one representingM-sector profits. The latter features a higher
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slope and a lower intercept than the former. These comparisons represent the choice to either
adopt the new technology and leave the T -sector, or abandoning it and moving out of the
M-sector. Note that the productivity shock εt positively affects πTt . For low values of the
productivity shock, πTt will be higher than either Aσ−1πTt − j or Aσ−1πTt − k. Conversely,
for high values of εt, πTt will be lower than Aσ−1πTt − j. Thus, when εt is high, profits are
higher using theM-sector technology, and when it is low the T -sector alternative is more
profitable. This follows from increasing returns to scale in theM-sector; a high productivity
shock incentivizes firms to pay the adoption cost j, in order to take advantage of economies
of scale, and save on production costs. Similarly, when the productivity shock is negative, the
firm has incentives to save on average costs by abandoning the technology, and charging a
higher price for their reduced output.

Now, let’s consider the dynamic technological choice problem of firm (j, k). That is, given
a particular realization of the shock ε1 and an initial technological choice γ0 (j, k) = {0, 1},
what is the optimal policy that determines the sequence {γt (j, k)}∞t=1 that maximizes the
discounted sum of profits? This optimal control problem can be characterized by the maximum
of the value functions Vt (ε1,mt, γt−1 (j, k)), as follows

V (ε1,mt, γt−1 (j, k)) = max
{γt(j,k)}∞t=1

{ [
Aσ−1πT (ε1,mt)− (1− γt−1 (j, k)) j − γt−1 (j, k) k

]
+ βVt+1 (ε1,mt+1, 1) ,

πT (ε1,mt) + βVt+1 (ε0,mt+1, )

}
. (7)

Note that since εt = ψtε1 for t > 1, all value functions for all periods can be written as functions
of ε1 instead of εt. Equation (7) implies the firm will be using the modern technology in period
t if Aσ−1πT (ε1,mt) − (1− γt−1 (j, k)) j − (γt−1 (j, k)) k + βVt+1 (ε1,mt+1, 1) > πT (ε1,mt) +

βVt+1 (ε1,mt+1, 0), and the traditional technology if Aσ−1πT (ε1,mt) − (1− γt−1 (j, k)) j −
(γt−1 (j, k)) k + βVt+1 (ε1,mt+1, 1) < πT (ε1,mt) + βVt+1 (ε1,mt+1, 0). The optimal6 adoption-
abandonment strategy can be stated in terms of the value of ε1 for which the firm is indifferent
between alternatives. These critical values εadopt (j, k), and εabandon (j, k), partition the state-
space into two decision regions, and are defined implicitly by;

εadopt (j, k) : Aσ−1πT
(
εadopt,mt

)
− j + β

{
V
(
εadopt,mt+1, 1

)}
= πT

(
εadopt,mt

)
+ β

{
V
(
εadopt,mt+1, 0

)}
, (8)

εabandon (j, k) : Aσ−1πT
(
εabandon,mt

)
− k +

{
V
(
εabandon,mt+1, 1

)}
= πT

(
εabandon,mt

)
+ β

{
V
(
εabandon,mt+1, 0

)}
. (9)

These thresholds imply that a sufficient large temporary shock can trigger a change in firm
6If for every triplet (ε1,mt, γt−1 (j, k)) the function Vt converges to a finite number, then there exists a time

invariant function V (·) , which relates the value of the firm in period t to εt, mt, and γt−1 (j, k). Conditions
for the existence of V (·) are derived in Baldwin (1989). The proof requires few assumptions. In particular,
the function πTt (εt,mt) has to be continuous in all arguments and bounded above and below. Note that since
mt ∈ (0, 1), as long as εt is bounded above and below, this assumption will hold.
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(j, k)’s technology choice, while small shocks are unlikely to do so. To demonstrate that this
is the case, first is necessary to show that there exists a band of inaction.7

Proposition 3. (Existence of band of inaction): If firm’s (j, k) optimal policy is characterized
by εadopt (j, k) and εabandon (j, k), then optimal strategy of the firm is such that εadopt (j, k) >

εabandon (j, k).

The proof is simple, and relies on Equation (8), Equation (9), and the assumption
that j > k. First, note that if j = k, then πT

(
εadopt,mt

)
= πT

(
εabandon,mt

)
, which is a

contradiction. Also if πT
(
εadopt,mt

)
< πT

(
εabandon,mt

)
that would imply k > j, which is

also a contradiction.
Before moving on to describe how shocks may impact individual technological choices, the

relationship between the shock, ε1, and the value functions, V (ε1,mt+1, γt−1 (j, k)) , needs to
be established. Define profits in the modern sector relative to profits in the traditional sector
as

V relative (ε1,mt, γt−1 (j, k)) ≡ (Aσ−1 − 1)πT (ε1,mt)− (1− γt−1 (j, k)) j − (γt−1 (j, k)) k + β [V (ε1,mt+1, 1)− V (ε1,mt+1, 0)] . (10)

First, note that ∂πT (εt,mt)
∂εt

= exp(εt)
σ

[mtAσ−1 + (1−mt)]
2−σ
σ−1 > 0. As the shock is autoregressive,

this implies that a positive shock will weakly increase profits in the T -sector in all subsequent
periods. Also note that as Aσ−1 > 1, the continuation value of a firm in the M-sector
(V (ε1,mt+1, 1)), will increase more than the continuation value of a firm in the traditional
sector (V (ε1,mt+1, 0)) . Thus, V relative (ε1,mt) is a increasing function of the shock, ε1;

∂V relative(ε1,mt)
∂ε1

= (Aσ−1 − 1) ∂πT (ε1,mt)
∂ε1

+ β
[
∂V (ε1,mt+1,1)

∂ε1
− ∂V (ε1,mt+1,0)

∂ε1

]
> 0. (11)

Now, lets consider how shocks of different sizes can affect the technological choices of
individual firms.

Proposition 4. (Effects of the shock of technological choices): Given that (j, k)’s optimal
strategy is defined by a band of inaction, a sufficiently large productivity shock can trigger a
permanent change in their technological choice.

7Or hysteresis band, in the terminology of Baldwin (1989). Similar mechanisms have been used in the
international trade literature to generate hysteresis (e.g., Dixit 1989; Dumas 1989; Baldwin and Lyons 1989;
Baldwin 1990; Ljungqvist 1994).
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The proof is by construction of an example, summarized in Figure 1, which depicts the
value of a firm in the M-sector relative to that of a firm in the T -sector. In the case of
a firm adopting the new technology and paying the adoption cost j, the relative value is
denoted V relative

t (ε1,mt, γt−1 (j, k) =0), while for a firm already operating the new technology,
and paying the continuation cost k, is denoted V relative

t (εt,mt, γt−1 (j, k) = 1) (see Equation
10). Consider first the case of a producer initially in the T -sector, and let the realization of
the shock be such that εabandon (j, k) < ε1 < εadopt (j, k). In this case, the value of the firm will
be higher staying in the T -sector. Graphically this is reflected by the fact that the value from
operating the traditional technology (the horizontal axis) is higher than the relevant outside
option of adopting the modern technology (solid blue line) to the left of εadopt (j, k) . On the
other hand, if the shock is such that ε1 > εadopt (j, k), then the value of the firm entering the
M-sector is higher that that of staying in the T -sector (i.e., to the right of εadopt (j, k) the
solid blue line is above the horizontal axis). Finally, when ε1 ∈

(
εabandon, εadopt

)
the firm will

not change its technological choice. In the terms of Baldwin (1989), this interval is referred
to as a band of inaction.

Similarly, a firm initially in the M-sector will only abandon the modern technology if
ε1 < εabandon (j, k) (i.e., the red line is below zero to left of the εabandon (j, k) threshold).
More sophisticated examples may be interesting, but this simple case is sufficient to prove
Proposition 4. In sum, Figure 1 illustrate the basic logic behind technological choices at the
level of an individual intermediate firm. Small shocks will be unlikely to trigger changes in
the use of technology. However, large changes have the potential to break the firm out of the
band of inaction, triggering adoption or abandonment, depending on the relevant case.

2.6 Equilibrium

So far, optimality conditions have been discussed regarding pricing, quantities and technological
choices. However, it is yet to be determined how to aggregate the continuum of intermediate
producers to obtain the equilibrium share of firms operating the modern technology. To begin,
lets define equilibrium in the economy described above. A list of equilibrium conditions can
be found in Appendix B.

Definition. (Equilibrium): Given an initial technological choice for each firm, γ0 (j, k),
and a shock ε1, an equilibrium is household policies {Ct (εt,mt) , Lt (εt,mt)}∞t=1; poli-
cies for firms, {γj,k,t (εt,mt)}∞t=1,

{
yTt (εt,mt) , y

M
t (εt,mt) l

T
t (εt,mt) , l

M
t (εt,mt)

}∞
t=1

; prices{
pTt (εt,mt) , p

M
t (εt,mt) , Pt (εt,mt) ,Wt (εt,mt)

}∞
t=1

; and a measure of intermediate firms op-
erating in theM-sector, {mt (εt)}∞t=1, such that (i) the household maximizes utility, (ii) all
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Figure 1: Effect of productivity shock on technological choices

Note: The figure depicts relative profits in the modern sector (V relative (ε1,mt, γt−1 (j, k)) =(
Aσ−1 − 1

)
πTt (ε1,mt)− (1− γt−1 (j, k)) j− (γt−1 (j, k)) k+ β [V (ε1,mt+1, 1)− V (ε1,mt+1, 0)]) for

a firm adopting in period t and its currently paying the adoption cost j (the blue line, denoted
V relative (ε1,mt, 0)), and a firm which adopted prior to period t, and is currently paying the continu-
ation cost k (the red line, denoted V relative (ε1,mt, 1)). The horizontal represents the value of the
unexpected aggregate productivity shock, ε1.

intermediate producers maximize their profits net of technological costs (if applicable), (iii)
the final good producer’s optimality conditions are met, (iv) prices clear all markets, (v) the
measure of firms in using the modern technology, mt, satisfies;8

mt =

∫
k

∫
j

δ(j, k)γt (j, k) djdk, (12)

where δ(j, k) is the joint density of adoption, j, and continuation, k, costs, and;

γt (j, k) =

1 if firm (j, k) is operating the modern technology in period t

0 if firm (j, k) is operating the traditional technology in period t
, (13)

8Expressions similar to Equation (12) are often used in the context of mathematical models of hysteresis
(see Mayergoyz 2003), Although the models presented in Mayergoyz (2003) have been mainly used in the
physical sciences, some authors have emphasized their generality, and the possibility of applying them to
economic phenomena (for instance, Mayergoyz and Korman 2021). The model presented here includes some
elements from these works, and thus can be considered the first to apply their insights in general equilibrium.
For a review of this literature see Göcke (2002).
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and (vi) the following resource constraints hold;

Lt = 1 = mtl
M
t + (1−mt) l

T
t , (14)

Yt = Ct + Jt +Kt. (15)

where;

Jt =

∫
k

∫
j

γt(j, k)(1− γt−1(j, k))jdjdk (16)

Kt =

∫
k

∫
j

γt(j, k)γt−1(j, k)kdjdk (17)

2.7 Model implications

In order to characterize equilibrium in this economy, first define πadopt (j, k,mt) ≡
πT
(
εadopt (j, k) ,mt

)
as the level of profits in the traditional sector evaluated at the value

of the aggregate productivity shock that makes firm (j, k) indifferent between adopting the
modern technology and remaining in the traditional sector (i.e., evaluated at εadopt (j, k)).
Similarly, let πabandon (j, k,mt) ≡ πT

(
εabandon (j, k) ,mt

)
be the level of profits in the tradi-

tional sector evaluated at the value of the aggregate productivity shock that makes firm (j, k)

indifferent between abandoning the modern technology and remaining in it (i.e., evaluated at
εabandon (j, k)). To determine in which sector firm (j, k) will operate, it suffices to compare
the current value of πTt to the thresholds πadopt (j, k,mt) and πabandon (j, k,mt), depending on
the previous status of the firm, γt−1 (j, k). Let ∆

(
πadopt

)
and ∆

(
πabandon

)
be the cumulative

density functions of πadopt (j, k,mt) and πabandon (j, k,mt). That is, the share of firms that
would adopt the technology if πTt = πT

(
εadopt (j, k) ,mt = ∆

(
πadopt

))
and the share of firms

that would abandon de technology if πTt = πT
(
εabandon (j, k) ,mt = ∆

(
πadopt

))
.

To illustrate how shocks may affect mt in equilibrium, consider the numerical examples
contained in Figures 2, 3, and 4. These describe how mt evolves after productivity shocks of
large, intermediate, and small magnitudes, respectively (the definition of small, intermediate,
and large shocks will be clarified momentarily). First, Figure 2, considers an scenario in which
a large negative or positive shock occurs. Profits in the T -sector under no shock are denoted
πTt (ε0 = 0) (solid black line), after a negative 7.5% shock denoted πTt (ε1 = −7.5%) (dashed
red line), and after a positive 7.5% shock denoted πTt (ε1 = +7.5%) (dashed blue line). These
three curves are Equation (5) evaluated at the given values of ε1. The solid blue line represents
the cumulative density function ∆

(
πadopt

)
. That is, each each point in the solid blue curve is
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Figure 2: Equilibrium determination for large shocks

Note: The figure depicts how the equilibrium values of the adoption share can be determined for
large shocks, both positive and negative. See text for details.

the percentage of firms which would adopt theM-sector technology (vertical axis) at that
level of profits in the T -sector (horizontal axis). Similarly, the red curve represents ∆

(
πadopt

)
,

the cumulative density function of πabandon (j, k) (i.e., the percentage of firms that would stay
in the modern sector at that level of profits in the T -sector). In these numerical examples,
both CDFs are assumed to follow a logistic distribution.9 Equilibria are determined by the
intersection of these curves, as explained below. Note that from Proposition 3 it follows
that ∆

(
πadopt

)
will be to the right of ∆

(
πabandon

)
. This is the case because for every firm

εadopt (j, k) > εabandon (j, k).

First, let us consider the situation before the shock in Figure 2. The initial equilibrium in
this case is given by profits in the T -sector before the shock (solid black line). Note that any
point to the left of the intersection of the solid black and solid red curves (point B2) cannot be
a valid equilibrium, as profits would be too low to sustain that level of firms operating in the
M-sector. Similarly, points to the right of the intersection of the solid black and solid blue
lines (point C2) cannot be equilibria, as more firms would enter theM-sector at that level of
profits. Thus, any point on the solid black line between points B2 and C2 can be the initial
equilibrium. Consider for example point A; no firm would like to adopt as profits are not

9The assumption of a logistic distribution is supported by the empirical literature on the diffusion of
technologies, which concludes that S-shaped curves, such as the logistic, provide a good approximation to
technological adoption on the extensive margin (e.g., Comin et al., 2008).
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sufficient to induce the entry of any additional firm into theM-sector at the initial adoption
share m0 (dashed black line), and no firm would like to abandon the technology, as profits
are higher than the level that would trigger the abandonment (intersection between dashed
black line and solid red curve). Assuming the initial adoption share is given by point A, when
a positive shock occurs, new firms will adopt theM-sector technology if the intersection of
profits during the shock period (dashed blue line) and ∆

(
πadopt

)
(solid blue line) is above the

initial adoption share m0 (black dashed line). The adoption share and T -sector profits in the
shock period will be higher than in the initial period. This can be seen graphically by the fact
than point B1 is higher than point A in both the mt and the πTt axes. As the shock dissipates,
the dashed blue line will converge to the solid black line. After a number of periods the
intersection of the dashed blue line and the solid red line will result in an adoption share lower
than the adoption share of point B1. Then, some of the new entrants will start abandoning
theM-sector technology. This will continue until the shock completely dissipates, and the
economy will converge to point B2, with a higher mt, and lower πTt than the initial point A.
The same logic applies for negative shocks. First, the negative shock reduces profits from the
initial black line to the dashed red line during the shock period, inducing the exit of some
firms, and moving the economy from point A to point C1. Then as the shock dissipates, the
dashed red line converges to the solid black line. As profits increase this induces re-adoption
for some firms. When the shock dissipates, equilibrium will be the intersection of the solid
black and blue lines, at point C2, with a lower mt and higher πTt than in the initial point A.

Figure 3 demonstrates how shocks of intermediate size can also have a permanent impact
on the adoption share, without some firms re-adopting or re-abandoning as the shock dissipates.
Note that in this case the adoption share for point B1 is below the adoption share of point
B2. This implies no firm re-abandons after the shock dissipates. Similarly, the adoption share
for point B1 is above that of point B2. This implies no firm re-adopts as the shock dissipates,
and mt stays at the same level as in point B1. The case of a negative shock of the same
magnitude is represented by points C1 and C2.

Finally, Figure 4 illustrates that sufficiently small shocks do not have permanent effects
on the adoption share. Note that B1 has an adoption share lower than the initial one, and
that C1 has a higher mt than that of point A. In both cases the shock does not trigger any
change in the adoption share.

The relationship between the size of the shock and the long-run change in the adoption
share (i.e., mT−m0, where T tends to infinity) illustrated in Figures 2, 3, and 4, is summarized
in Figure 5, which shows productivity shocks from −10 to +10% on the horizontal axis and
the corresponding change in the adoption share, denoted mT −m0 (where T →∞). First,
note that small shocks have no impact on the adoption share, as in Figure 4. Second, shocks
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Figure 3: Equilibrium determination for intermediate shocks

Note: The figure depicts how the equilibrium values of the adoption share can be determined for
shocks of intermediate size, both positive and negative. See text for details.

Figure 4: Equilibrium determination for small shocks

Note: The figure depicts how the equilibrium values of the adoption share can be determined for
small shocks, both positive and negative. See text for details.
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Figure 5: Permanent impact on adoption share as a function of shock size

Note: The figure depicts the long-run change in the adoption share, mT −m0, as a function of the
productivity shock ε1. Se text for details.

of intermediate magnitude have a linearly increasing long-run impact on the adoption share,
as in Figure 3. Finally, the long run impact of shocks is bounded above and below by points
B2 and C2 in Figures 2, 3, and 4.

The main implications of the model are summarized in Figure 5.10 First, there is a
maximum sustainable level of technological adoption, characterized by the adoption share
at point B2, and a corresponding minimum sustainable level, characterized by mt at point
C2 (note points B2 and C2 are common across Figures 2, 3, and 4). Any level of adoption
between these two can be sustained in the long run. Second, the long-run impact of shocks
of intermediate sizes will be linear on the size of the shock. Third, as in the individual case,
there will be an aggregate band of inaction, in which there will be no change in technological
choices. The definition of large, intermediate, and small shocks is a result of the model and
it is clear from Figure 5; small shocks are those which are not large enough to break the
economy out of the aggregate band of inaction, intermediate shocks are those that push the
economy out of the band of inaction, triggering a long-run change in the adoption share, but
without a subsequent period re-adoption or re-abandonment of the technology. In other words,
in addition to the Big Push, there is also a Big Pull in which large negative shocks have to
potential to bring the economy to an equilibrium with a lower level of technological adoption.
Finally, large shocks are those that trigger a change in the adoption share, followed by a

10Appendix C presents the same results as Figure 5, for different parameter values.

20



period of re-adoption or re-abandonment, with the economy finally settling on the maximum
or minimum sustainable level of adoption, depending on the case.

Although the results of Figure 5 are intuitive, it is important to highlight that they
constitute only an particular example of how the relationship between the shock and the
adoption share may look in the long-run. It may well be the case that shocks do not affect
the share of firms using theM-sector technology in long-run if, for example, πadopt (j, k) =

πabandon (j, k) for all firms. In such scenario, the economy would always converge back to
point A over time, and the shock would not have lasting effects on the adoption share mt

(other than the direct impact the shock would have if it was very persistent). Similarly, if
the distribution of the shock ε1 is bounded above and below, such that the adoption share of
point B1 is always below m0, and the adoption share of point C1 is always above m0, then no
shock will have a permanent impact, and Figure 5 would correspond to the horizontal axis
(i.e., shocks are bounded to be too small to have a permanent impact).

3 Taking the model to the data

Does the data support the model outlined above? Specifically, is the the relationship between
productivity shocks and long-run changes in the share of firms using costly, more productive
technologies closely approximated by Figure 5? This section tackles these questions, by
estimating the long-run response of technological adoption to total factor productivity (TFP)
shocks using semi-nonparametric local projections.

3.1 Semi-nonparametric local projections

Let mi,c,t denote a variable measuring the share of firms using technology i in country c, and
period t; let εc,t be a variable representing an aggregate TFP shock affecting country c in
period t; and let xc,t denote a vector of control variables. We are interested in characterizing
how a TFP shock εc,t affects mi,c,t in subsequent periods t + h, relative to a baseline of no
shock. Formally, define an impulse response as

R, ε (h) ≡ E [mi,c,t+h|εc,t = ε0 + ε;xc,t]−E [mi,c,t+h|εc,t = ε0;xc,t] ; h = {0, 1, . . . , H} , (18)

where ε is a particular realization, and ε0 is the initial value of the shock. Let mi,c,t be
characterized by the following equation

21



mi,c,t+h = αi,c + µh (εc,t) + Γhxc,t + νi,c,t+h (19)

where αi,c are country-technology fixed effects, νi,c,t+h the error term, and µh (·) an
unspecified function relating the TFP shock to the dependent variable at each horizon h. An
estimate of the impulse response in period h would be R̂ (h, ε) = µ̂h (ε0 + ε)− µ̂h (ε0). Now,
consider the following local projection (Jordà, 2005)

mi,c,t+h −mi,c,t−1 = ∆µh (εc,t, εc,t−1) + Γh∆xc,t + ui,c,t+h (20)

where ∆xc,t = xc,t−xc,t−1, ui,c,t+h = ∆νi,c,t+h, and ∆µh (εc,t, εc,t−1) = µh (εc,t)−µh (εc,t−1).
In order to consistently estimate µh (·), I follow the approach of Baltagi and Li (2002) which
propose approximating by a non-parametric regression estimator. In the following estimations,
I will use a local quadratic regression based on an Epanechnikov kernel11 to estimate µ̂h (εc,t).
Finally, I use µ̂h (εc,t) to compute the implied estimated non-parametric local projection
impulse response R̂ (h, ε) = µ̂h (ε)− µ̂h (0).

The estimation approach outlined above presents several advantages. First, using a non-
parametric regression to estimate µ̂h (ε) does not impose any assumption on the functional
form of µh (·). While the model in Section 2 suggests a particular non-linear shape for µh (·)
(summarized by Figure 5), a priori there is no obvious way to impose assumptions on where
the various kinks may be located. Moreover, if the model is not a good approximation of
the impulse response in the long-run, then the true data generating process may be far from
Figure 5. In this case, any estimate relying on assumptions about µh (·) could be subject to
substantial misspecification bias. The non-parametric procedure I propose allows for verifying
whether Figure 5 is a good approximation for the relationship present in the data, µ̂h (·),
without imposing any functional form assumptions. Second, as pointed out by Piger and
Stockwell (2023), the cumulative local projection of Equation (20) has a better performance
finite sample relative to an specification in levels (such as directly estimating Equation 19).
In the small samples frequently employed in empirical macroeconomics, OLS estimates of
impulse responses via local projections can be biased and produce incorrect inference (Kilian
and Kim, 2011; Herbst and Johannsen, 2021). Piger and Stockwell (2023) show by simulation
that estimating local projections in differences (as in Equation 20) substantially reduce bias
and improve confidence interval accuracy with respect to an specification in levels (such as
Equation 19). Third, the non-parametric approach outline above is particularly well suited
to estimate responses for large shocks. Gonçalves et al. (2023) present evidence that state

11Another application of local projections using non-parametric methods can be found in Barnichon and
Brownlees (2019). They propose an estimation method based on B-spline smoothing to compute impulse
responses, that increases efficiency substantially, relative to standard local projections.
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dependent local projection estimates are strongly biased in population for shocks that are
large (relative to their standard deviation). However, they propose a non-parametric estimator
that remains valid for shocks of large magnitudes.

To illustrate the properties of this estimator in finite samples, a Monte Carlo experiment
presented in Appendix D. This exercise estimates responses non-parametrically, where a
cubic function determines the impulse response in an autoregressive data generating process.
In small samples estimates are biased towards linearity However, as the sample increases
these biases become smaller. This Monte Carlo experiment suggest that, for the sample sizes
used in the empirical estimates below, the impact of finite sample biases should be limited.
Moreover, the fact that in finite samples the results are biased towards linearity, imply that
any estimated non-linearity is likely to be stronger in the population.

3.2 Data

This subsection describes the data used in the semi-nonparametric local projections estimation.
To obtain accurate impulse responses at long horizons, time series spanning as much time
as possible are required, preferably featuring a wide panel of countries to increase statistical
power. Therefore, the sources were selected to maximize both the time series and panel
dimensions. Three databases meeting these requirements are used in the subsequent analyses.
All of them reaching back to at least 1890, and comprising 18 advanced economies.12

The first one is the Macrohistory database Jordà et al. (2017) covers 18 advanced economies
since 1870 on an annual basis.13 It contains nominal and real macroeconomic series, such as
output, interest rates, inflation, credit, and other relevant controls.

The second source is the Cross-country Historical Adoption of Technology (CHAT) dataset
from Comin and Hobijn (2009). Comin and Hobijn (2004, 2009, 2010) introduced historical
data on the adoption of major technologies over the period 1750-2003 for over 150 countries.
From this database, it is possible to construct a country-technology-year panel, which measures
the evolution over time of the intensity of adoption of each technology in every country. As
Comin and Nanda (2019), I focus on a subset of 15 general purpose technologies, presented in
Table 1.

A potential issue is the heterogeneity among the different technologies. Some of them
represent technical change embodied in capital goods (e.g., number of passenger cars in
circulation), others are production technologies and are measured by output (e.g., tons steel

12These are Australia, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan,
Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, and the United States

13Available online at http://www.macrohistory.net/data/.
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Table 1: Description of technologies used
Technology Measure Capital intensity Invention date

Railroad Km of track installed High 1825
Telegram Number of telegrams sent High 1835
Telephone Number of telephones connected High 1875

Electricity production Kw/Hr produced High 1882
Electric arc steel Tons produced High 1907
Blast furnace steel Tons produced High 1950

Cell phones Number of users High 1973
Looms Number in operation Low 1785

Passenger cars Number in operation Low 1885
Commercial Vehicles Number in operation Low 1885

Tractors Number in operation Low 1903
Radio Number in operation Low 1920
TV Number in operation Low 1927

Computers Number in operation Low 1973
MRI machines Number in operation Low 1977

Source: Comin and Nanda (2019).

produced in electric arc furnaces), and the remainder by the number of users (e.g., number of
cellphone users). How can these different variables be transformed, so they are expressed in
the same units measuring technological adoption? The answer is first to take logarithms of
the per capita technology variables. This effectively removes the units, transforming each
variable into a technology diffusion curve measured in percent (see Comin and Hobijn 2010
for details). Second, as technologies at some point are fully adopted or become obsolete, the
data are censored when the level of adoption becomes stable in each country. This is specially
important in the case of this paper, as I focus on technologies abandoned for reasons unrelated
to obsolescence. Finally, in the local projections specification below, technology-country fixed
effects are included to account for adoption lags and constant unobserved factors.

Capital intensity is a particularly relevant characteristic of the technologies considered
here. The adoption of certain technologies is more costly than others, because of the relatively
high cost of the capital goods which embody them, or due to the need for a expensive support
infrastructure. As the effect of shocks is likely to be different depending on the capital
intensity two sets of analyses are performed; one considering all technologies, and another
one taking into account only those exhibiting high capital intensity. The measure of capital
intensity employed here is based on the cost of adopting each technology. For instance, the
railroad is considered to be a capital intensive technology, as it requires of installing a network
of tracks, stations, and equipment before being operational. As Comin and Nanda (2019)
remark, capital intensity is a purely technological attribute, stable across time and space,
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thus facilitating the analysis (for details on how the capital intensity of each technology was
obtained see Table 8 in Comin and Nanda, 2019).

Finally, the third data source is the Long Term Productivity (LTP) database14 of Bergeaud
et al. (2016), which includes data on TFP per hour worked, for the 18 countries in sample,
from 1890 to 2015. Variables in this database are that it is expressed in terms of purchasing
power parity, and it uses consistent assumptions across countries and time for the construction
of the series. Thus, the TFP shocks used in the estimation are comparable across countries.
TFP is computed as the ratio of GDP to an aggregation of the two considered production
factors, capital, and labor. The capital stock is computed by the perpetual inventory method
from gross capital formation data on machinery, equipment, and buildings, each with is own
depreciation assumptions (for details see subsection 2.2 in Bergeaud et al. 2016). Assuming a
Cobb-Douglas production function, then TFPLTP

t = GDPt
Kα
t−1L

β
t

, where α+β = 1. The parameters
α and β represent output elasticities with respect to different factors. Thus, these can be
estimated by their share of their remuneration on total income. As in the sample labor costs
represent around two thirds of income, it is assumed that α = 0.3.

3.3 Estimation results

This subsection presents linear and semi-nonparametric local projection estimates of the
response of technological adoption to TFP shocks. The semi-nonparametric local projection
estimates are based on Equation (20), and use the method outlined in Section 3.1 to obtain
µ̂h (εc,t). Then the estimated impulse response is computed as R̂ (h, ε) = µ̂h (ε)− µ̂h (0). The
shock variable is the log difference of TFP from the LTP Database. Standard linear local
projection estimates are also presented as a benchmark. The vector of controls, ∆xc,t. includes
up to two lags of the dependent and impulse variables, consumer price index, investment as a
percentage of GDP, government expenditure as a percentage of GDP, population, and the
long and short term interest rates (variables in percentage are included in first differences,
while all others are in log first differences). The shock variable is trimmed at the 1st and 99th
percentiles, to avoid estimating µh (εc,t) in regions where data are sparse. All standard errors
are computed clustering at the technology and country levels.

Before presenting semi-nonparametric local projection results, two preliminary linear local
projections are presented. Two facts are worthy of mention. First, a linear estimate of
Equation (20) (that is, µh (εc,t) = δhεc,t) is presented in Figure 6, Panel (a). The accumulated
IRF estimates reveal that 12 years after impact a 1 percent shock to TFP growth is associated
to an increase in adoption of about 1 percent. These estimates are symmetrical, which implies

14Available online at http://www.longtermproductivity.com.
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Figure 6: Linear response of technological adoption to a TFP shock
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(b) Response of TFP growth to a TFP growth shock

Note: One and two standard deviation confidence bands for each estimate shown as shaded blue
areas. Standard errors clustered at the technology and country levels in Panel (a) and at the country
level only in Panel (b). Panel (a) sample: 1893-2012 (5702 observations, war periods excluded).
Panel (b) sample: 1894-2019 (1124 observations). See text for details.
Source: Author’s calculations

a negative one percent shock would result in a minus one percent impact on adoption, 12
years after impact. Additionally, regardless of the size of the shock, the impact would always
be determined by the same coefficient (at the relevant horizon). Second, it is important
to verify that the long-run responses in Panel (a) are not a simple mechanical result of an
unusually persistent response of TFP growth to its own shock. Panel (b) shows that TFP
growth returns to zero in the year after impact. This verifies that the long-run responses in
Panel (a) are not a mechanical result of a very persistent response of TFP to its own shock.

Now, lets verify if there are any non-linearities present in the impulse response. Figure
7 shows the non-linear responses of technological adoption to a TFP shock, estimated by
semi-nonparametric local projections. Panel (a) presents a 3D-surface plot of R̂ (h, ε) =

µ̂h (ε)− µ̂h (0), for each horizon h = {0, 1, 2, . . . , 12} and value of the TFP shock, while Panel
(b) shows the response 12 years after impact, along with block wild bootstrap confidence
bands clustered at the technology and country level (400 replications). The main result is that
at all horizons large shocks have a substantially larger impact than small shocks, with the
latter having responses closer to zero). Appendix E contains estimates of the mean function
µ̂12 used in the computation of R̂(12, ε).

To test if the cost of adoption is the mechanism driving the non-linearities, Figure 8
presents the same estimates as Figures 7, but focusing on the sub-sample of high capital
intensity technologies (as identified by Comin and Nanda, 2019). As before, Panel (a) presents
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Figure 7: R̂ (h, ε) - Full sample

Panel (a) Surface plot Panel (b) R̂ (12)

Note: Response of technological adoption to a TFP shock. Local polynomial regression based on an
Epanechnikov kernel. The shock variable was trimmed at the 1st and 99th percentiles. Confidence
bands from block wild bootstrap, clustered at the the technology and country levels (400 replications).
Sample 1893-2002 (5640 observations, war periods excluded). See text for details.
Source: Author’s calculations

a surface plot with the impulse responses at h = {0, 1, 2, . . . , 12}, while Panel (b) exhibits
the response 12 years after impact, and the corresponding block wild bootstrap confidence
bands clustered at the technology and country level (400 replications). Both panels show
steeper slopes for larger shocks, and values closer to zero from small shocks, relative to Figure
7. Although this sub-sample comprises roughly half of the sample, confidence bands are
noticeably tighter, indicating increased precision in the estimates. Additionally, both large
positive and negative values are statistically different from zero. This suggests that in the
data, the mechanism explaining the non-linearities in the response of technological adoption
to TFP shocks matches that of the model presented above; the costs of initially implementing
technologies into production processes. Appendix E contains estimates of the mean function
µ̂12 used in the computation of R̂(12, ε) for the high capital intensity sample.

Several robustness checks are presented in Appendix E. Potentially the estimated non-
linearities presented above could be driven by the presence of outliers, such as specific countries,
technologies, or historical periods. While the data is trimmed at the 1st and 99th percentiles
of the TFP growth distribution to avoid estimating µ̂h in regions where data are sparse, it is
still possible that the results are the consequence of a subset of observations. Appendix E
presents "hairplot" responses where I drop one country at a time from the full sample and
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Figure 8: R̂ (h, ε) - High capital intensity sample

Panel (a) Surface plot Panel (b) R̂ (12)

Note: Response of technological adoption to a TFP shock. Local polynomial regression based on an
Epanechnikov kernel. The shock variable was trimmed at the 1st and 99th percentiles. Confidence
bands from block wild bootstrap, clustered at the the technology and country levels (400 replications).
Sample 1893-2002 (2782 observations, war periods excluded). See text for details.
Source: Author’s calculations

re-estimate the impulse response, R̂(12, ε). Also, estimates dropping one technology at a
time, and droppping a 5-year window at the rime are presented in Appendix E ("hairplots").
In all cases, estimates are remarkably similar to the benchmark. The only exception is the
Great Depression period, which is found to have a substantial effect on the estimates, but
only in the full sample. It is important to recall that in the model the mechanism causing
the non-linearities is related to the cost to implement and operate the technologies, Thus,
the results are expected to be weaker in the full sample, and stronger in the high capital
intensity sample. Estimates for alternative sizes of the kernel bandwidth, which control the
degree of polynomial smoothing around each point in the estimation of the function µ̂12, are
also presented in Appendix E. As in the other robustness checks, the high capital intensity
sample results results do not change substantially, and remain consistent with the model.
Finally, estimates using an extended set of controls are also included in Appendix E. The
non-linearities are still present in the estimates after extending the number of lags of all
variables to six, and adding total outstanding credit, world GDP, and government expenditure
as percentage of GDP. All these exercises highlight the remarkable robustness of the main
result: the non-linearities observed in the data are a close match for those predicted by the
model.
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4 Policy

Using the model and estimates presented above, this section aims to verify if—after a negative
shock—it is optimal for a central planner to subsidize the cost of operating the modern
technology. Since output and consumption are increasing in the share of firms using the
more productive technology, this policy has the potential to avoid the loss of the economy’s
productive potential after a negative TFP shock. However, would this policy be welfare
increasing? I answer this question in a simplified three period version of the model, in which I
compare the representative consumer’s welfare in a decentralized economy and under central
planner choosing to subsidize the continuation cost k of all firms in the modern sector during
the shock period. The shorter time horizon simplifies the computation of the adoption and
abandonment thresholds (i.e., πadopt (j, k), and πabandon (j, k)) as functions of j and k, for each
firm (j, k).15 The social planner funds the technological costs of firms by levying a lump sum
tax from the household. Thus the budget constrain in the shock period (t = 1) will be

C1(ε1,m0) = W1(ε1,m0) +m0Aσ−1πT1 (ε1,m0) + (1−m0) π
T
t (ε1,m0)− τ (21)

where m0 is the initial (t = 0) adoption rate, ε1 the TFP shock (which reverts back to
zero in period 2), and τ a lump sum tax. To fund this policy, the lump sum tax should satisfy

τ = K1 =

∫
k

∫
j

γj,k,1γj,k,0kdjdk. (22)

Note the social planner can potentially achieve a higher welfare than the decentralized
economy. This is due to the fact that the competitive equilibrium is inefficient, because
of monopolistic distortions, and the fact that firms do not internalize that adopting the
modern technology increases demand for other producers, therefore failing to coordinate on
the efficient level of technological adoption.

The timing of events in this simplified 3-period model is as follows. In period 1, the shock
occurs, potentially reducing the share of firms operating the modern technology, m1. In period
2, the shock completely disappears. In this period some firms may readopt and pay the cost
j. Finally, in period 3 the firms which re-entered the modern sector switch to paying the
continuation cost k.

Results are calibrated to match the estimates of Panel (a) Figure 8. That is, the produc-
tivity parameter A, the elasticity of substitution between intermediate input varieties, and

15Specifically, the shorter time horizon allows the continuation values to be easily computed for each firm
(j, k), this allows for computing the corresponding thresholds, πadopt (j, k), and πabandon (j, k) directly from
Equations 8 and 9.
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Figure 9: R̂ (12, ε) - Estimates and model calibration - High Capital Intensity
Sample

Note: Local polynomial regression based on an Epanechnikov kernel. The shock variable was
trimmed at the 1st and 99th percentiles. Sample 1893-2002 (2782 observations, war periods excluded).
Model calibration; A = 1.25, σ = 2.75, πadopt ∼ Logistic(Mean = 0.34, Std. dev.=0.004), and
πabandon ∼ Logistic(Mean = 0.38, Std. dev.=0.007). See text for details.
Source: Author’s calculations

the distribution of πadopt (j, k), and πabandon (j, k) are calibrated16 to match the non-linear
relationship between the size of TFP shocks

and the response of the adoption share after 12 years (the solid blue line in Figure 8, Panel
b). Figure 9 overlays the calibrated relationship and the semi-nonparametric estimates for the
high capital intensity sample. The selected calibration closely matches the estimated impulse
response at h = 12.

Before moving on to analyze the welfare implications of shocks under the decentralized
and planner economies, it is important to note that a higher percentage of firms using the
M-sector technology is always preferred in terms of consumer welfare. Figure 10 presents
welfare in the calibrated three-period version of the model for decentralized economies with
different initial values of the adoption share, m0. It depicts a situation in which no shock
occurs, for values of m0 between the minimum and maximum sustainable levels (i.e., those
corresponding to points C2 and B2 in Figures 2, 3, and 4). Welfare is linearly increasing

16The calibration is A = 1.25, σ = 2.75. The joint distribution δ(j, k) is set produce the following
distributions for the adoption and abandonment thresholds; πadopt ∼ Logistic(Mean = 0.34, Std. dev.=0.004)
and πabandon ∼ Logistic(Mean = 0.38, Std. dev.=0.007). Alternative calibrations yield qualitatively similar
results.
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Figure 10: Welfare for different initial values of the adoption share

Note: The figure depicts welfare in the decentralized economy in the simplified 3 period version of
the model, when no shock occurs, for different initial values of the share of firms using the modern
technology. Parameter values are calibrated to match the empirical relationship presented in Figure
8. See text for details.

with the share of firms using the M-sector technology. This means that the discounted
sum of consumption minus aggregate continuation costs among the set of possible long-run
decentralized equilibria is maximized at the adoption share at point B2. This is a common
characteristic in Big Push models, where coordination failures may keep the economy away
from the most efficient equilibrium (e.g., Murphy et al. 1989). Since I focus on the welfare
impacts of negative shocks, studying the optimal policies subsidizing adoption (potentially
into an adoption share far above that of point B2) is beyond the scope of this paper.17

To illustrate the effect of subsidizing technological costs, I compute welfare (defined as the
discounted sum of consumption minus aggregate adoption and continuation costs) for negative
TFP shocks of different magnitudes. Figure 11 presents welfare in both the decentralized
and planner economies, relative to a no-shock benchmark. First, note that since all shocks
are negative, in every case welfare is lower than the no-shock benchmark, and decreasing
in the magnitude of the shock. Second, since small shocks do not trigger a change in the
percentage of firms operating the modern technology, welfare is the same in the planner and
decentralized economies (this corresponds to the scenario depicted in Figure 4). Third, for
shocks of intermediate magnitude, welfare is higher under the central planner. In these cases,

17For an analysis of how temporary adoption subsidies can have permanent effects, see Choi and Shim
(2022).
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Figure 11: Welfare analysis of subsidizing technological costs

Note: The figure depicts welfare in the decentralized economy, and under a planner that subsidizes
the cost of operating the modern technology in the shock period, in order to maintain the initial
(pre-shock) level of adoption. Parameter values are calibrated to match the empirical relationship
presented in Figure 8. See text for details.

welfare losses in the decentralized economy are not only explained by the shock, but also by
the fact that the adoption share falls in period one and stays at that level even after the shock
dissipates (see Figure 3). Because final good output and consumption are increasing in the
share of intermediate firms operating the modern technology, consumption would be lower in
all periods in the decentralized economy. Finally, for large shocks there is an additional welfare
cost associated to the re-adoption of the modern technology (see Figure 2). Larger shocks
will trigger more abandonments, and consequently more re-adoptions. Since by assumption
j > k, this entails a significant cost in period 2, which is increasing on the size of the shock.
Appendix F presents these results for different parameter values.

What are the implication of these model-based welfare computations for historical episodes?
Appendix F contains a table identifying the years with negative TFP growth rates that would
imply a long-lasting reduction of technological adoption (using the high capital intensity
sample impulse response estimates in Figure 8), and the associated welfare loss relative to
a no shock scenario (from Figure 11). Among the 34 identified episodes, the welfare losses
in the decentralized and planner economies were -2.56% and -1.73%, respectively. These
computations reveal that if technology operational costs had been subsidized during these
episodes, welfare losses could have been reduced by 32% compared to the decentralized
economy.
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5 Conclusion

In this paper, I presented a model in which firms can use or abandon an increasing returns
to scale technology, subject to heterogenous implementation and operation costs. The
implications of this model shed light on how temporary shocks may have long-lasting impacts
on the economy, through the endogenous technological adoption and abandonment. The main
insight of the model is that—unlike smaller episodes— large productivity shocks have the
potential to affect the share of firms using the technology, both positively and negatively.
However, these impacts are bounded above and below in the long-run, by maximum and
minimum sustainable levels of technological adoption. This nuanced characterization differs
from works in which shocks have linearly long-lasting impacts on technological adoption,
by highlighting the key role the magnitude of shocks. Additionally, I provide empirical
evidence revealing that both positive and negative shocks can have enduring effects on the
technological choices of firms, in a non-linear pattern that matches the model’s predictions.
To my knowledge, this paper is the only work showing that positive transitory shocks can
have long-lasting benefits on the economy via increased technological adoption. Finally,
welfare analysis using version of the model calibrated using the empirical results shows that
subsidizing the cost of can be welfare improving after large negative shocks.

These analyses have some direct policy implications. Specifically, they provide a rationale
for policies aiming to prevent the loss of productive potential by subsidizing the costs associated
to the operation of increasing returns to scale technologies, in a context in which there is
substantial amplification due to demand complementarities. However, such subsidies are
welfare increasing for large shocks only, and determining if a shock falls in that category
entails having information on specific implementation and operational costs associated to
the technologies being adopted in the economy, how these are different across firms, and the
characteristics of the alternatives they are replacing. Additionally, the fact that the long-run
impact of shocks on the share of firms using the modern technology is bounded above suggests
that there might be limits to policies seeking to push the economy closer to the technological
frontier. Determining where those limits are located is a promising avenue for future research.
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Appendix

A The Concorde

An illuminating example of absolute technological abandonment can be found on the Franco-
British supersonic airliner Concorde. The first two airlines scheduled to receive the plane
were Air France and British Airways, whose governments had footed the bill to develop and
build the aircraft. After these two, Pan Am Airlines signed non-binding purchase options
for six planes in 1963. Other airlines also ordered the plane in order to compete in the new
supersonic flight market. At the time of its first flight, orders from 16 airlines were received,
comprising 74 planes.

However, by 1973 there was significant disagreement between Aérospatiale/British Aircraft
Corporation (the manufacturers) and Pan Am, which subsequently canceled its orders over its
operating costs. In particular, rising oil prices were making the plane increasingly unprofitable
soured its prospects (in addition to concerns about the effect it’s sonic boom would have over
populations on the ground). This represented a particularly large shock to the operational
cost of the Concorde, as the reduction in supply by the OPEC triggered an increase in the
price of crude of 214 percent between 1972 and 1974. However, this was a temporary shock,
as by 1986 the real price of crude oil was back at the level it had prior to 1973 (for details,
see Heritage-Concorde 2010).

Just as competitive pressures made other airlines order the plane after Pan Am, their
cancellation also triggered the withdrawal of the most of the purchase agreements. By
the end of 1973 all but six orders were canceled. Ultimately only Air France and British
Airways operated the aircraft, until its retirement in 2003. Although this technology can
be considered abandoned, there is significant hope for its re-adoption. Three start-ups are
currently developing supersonic passenger jets. As of August 2022, American, United and
Japan Airlines have secured options to purchase 130 supersonic jets from Boom Technology Inc.
Unlike the Concorde, this time a significant portion of the orders are binding. Additionally,
they plan to optimize their engines to use sustainable aviation fuel (for details, see Boom-
Supersonic 2023).

The example of supersonic airliners reveals how the adoption of a non-obsolete technology
can be indefinitely delayed due to a large temporary shock that makes its operation unprofitable.
It also illustrates how adoption and abandonment decisions are complementary.
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B Proofs and list of model variables and equations

B.1 Proof of Proposition 1

Proof. Given a sequences of technological choices {γj,k,t}∞t=0, and of aggregate productivity
shocks {εt}∞t=0, the cost function for an intermediate firm in sector s ∈ {T ,M} is given by;

min
lsj,k,t,

{
Wtl

s
j,k,t + [γj,k,t(1− γj,k,,t−1)] j + [γj,k,tγj,k,t−1] k

}
s.t., ysj,k,t = [(γj,k,tA) + (1− γj,k,t)] eεtlsj,k,t

The Lagrange multiplier of this problem φst , corresponds to the marginal cost in terms of
the numéraire for firms in each sector. Note that the subscripts j and k are omitted, since
these marginal costs are the same for all firms within a sector (i.e., they depend only on the
wage, the new technology productivity parameter, and the aggregate productivity shock);

φTt =
Wt

exp (εt)
(23)

φMt =
Wt

Aexp (εt)
=
φTt
A

(24)

Given prices, real profits net of technological costs in theM-sector can be written as;

π̃Mj,k,t =

(pMj,k,t −
φTi,t
A )
(
pMj,k,t

)−σ
Yt − k if γj,k,t−1 =1

(pMj,k,t −
φTi,t
A )
(
pMj,k,t

)−σ
Yt − j if γj,k,t−1 =0

(25)

Similarly, profits for firm in the traditional sector are given by;

πTj,k,t = (pTj,k,t − φTt )
(
pTj,k,t

)−σ
Yt (26)

From (25) and (26) the following are the optimality conditions for prices;

pTj,k,t =
σ

σ − 1
φTt

pMj,k,t =
σ

σ − 1

φTi,t
A

Replacing these prices in (1), it is possible to write expressions for the output of firms in
each sector;

yTj,k,t =

(
σ

σ − 1
φTt

)−σ
Yt (27)
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yMj,k,t =

(
σ

σ − 1

φTt
A

)−σ
Yt (28)

Note that both prices and quantities depend only on marginal costs, which in turn depend
only on aggregate quantities, and not on firm specific characteristics. Thus for every firm in
sector s, prices and quantities will be the same, and the j and k subscripts can be omitted.

B.2 Proof of Proposition 2

Proof. As there are only two types of firms, the final good output can be written as;

Yt =
[
mt

(
yMt
)σ−1

σ + (1−mt)
(
yTt
)σ−1

σ

] σ
σ−1

(29)

Since the consumption good is the numéraire (Pt = 1),

Pt = 1 =
[
mt

(
pMt
)1−σ

+ (1−mt)
(
pTt
)1−σ] 1

1−σ
, (30)

Replacing the expressions for prices and marginal costs, and solving for Wt, yields the
following expression;

Wt =

(
σ − 1

σ

)
exp (εt)

[
mtAσ−1 + (1−mt)

] 1
σ−1 , (31)

Finally, replacing the wage in πTt ;

πTt =
(σ − 1)σ−1

σσ

(
1(

σ−1
σ

)
[mtAσ−1 + (1−mt)]

1
σ−1

)σ−1

Yt

Simplifying;

πTt =
1

σ

(
mtAσ−1 + (1−mt)

)−1
Yt (32)

Replace labor demands on market clearing for labor;

1 = mt

(
σ

σ − 1

φTt
A

)−σ
Yt

Aexp (εt)
+ (1−mt)

(
σ

σ − 1
φTt

)−σ
Yt

exp (εt)

Solving for Yt

Yt =
(exp (εt))

1−σ

[Aσ−1mt + (1−mt)]

(
σ

σ − 1
Wt

)σ
Replacing Wt;
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Yt = exp (εt)
[
mtAσ−1 + (1−mt)

] 1
σ−1

Replacing Yt in πTt ;

πTt =
exp (εt)

σ

[
mtAσ−1 + (1−mt)

] 2−σ
σ−1 (33)

B.3 List of variables and equations

Table B.11: List of variables and corresponding equations
Name Notation Equation

Consumption Ct Ct = Yt − Jt −Kt

Labor supply Lt Lt = 1

Adoption operator for firm (j, k) γt(j, k) γt(j, k) =

{
1 if firm (j, k) is operating inM-sector in period t
0 if firm (j, k) is operating in T -sector in period t

Output of firms in T -sector yTt yTt =
(

σ
σ−1φ

T
t

)−σ
Yt

Output of firms inM-sector yMt yMt =
(

σ
σ−1

φTt
A

)−σ
Yt

Labor demand of firm in T -sector lTt lTt =
(

σ
σ−1φ

T
t

)−σ
Yt

exp(εt)

Labor demand of firm inM-sector lMt lMt =
(

σ
σ−1

φTt
A

)−σ
Yt

Aexp(εt)

Price of firm in T -sector pTt pTt = σ
σ−1φ

T
t

Price of firm inM-sector pMt pMt = σ
σ−1

φTt
A

Real marginal cost in T -sector φTt φTt = Wt

exp(εt)

Real marginal cost inM-sector φMt φMt = Wt

Aexp(εt)
=

φτt
A

Gross profits of T -sector firm πTt πTt = exp(εt)
σ

[
mtAσ−1 + (1−mt)

] 2−σ
σ−1

Gross profits ofM-sector firm πMt πMt = Aσ−1πTt
Consumption good price Pt Pt = 1

Wage Wt Wt =
(
σ−1
σ

)
exp (εt)

[
mtAσ−1 + (1−mt)

] 1
σ−1

Measure of firms in theM-sector mt mt =
∫
k

∫
j

δ(j, k)γt(j, k)djdk

Aggregate net profits Πt Πt = mtAσ−1πTt + (1−mt)π
T
t − Jt −Kt,

Aggregate adoption costs Jt Jt =
∫
k

∫
j

γt(j, k)(1− γt−1(j, k))jdjdk

Aggregate continuation costs Kt Kt =
∫
k

∫
j

γt(j, k)γt−1(j, k)kdjdk

Aggregate productivity shock εt εt = ψtε1, where E [ε1] = 0, and Std. dev. [νε]

Aggregate output Yt Yt =
[
mt

(
yMt
)σ−1

σ + (1−mt)
(
yTt
)σ−1

σ

] σ
σ−1

Adoption threshold πTt (εadopt, j, k) Defined implicitly by εabandon. See text.
Abandonment threshold πTt (εabandon, j, k) Defined implicitly by εabandon. See text.
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C Permanent impact on adoption as function of shock
size for alternative parameter values

Figure C.12: Permanent impact on adoption share as a function of shock size

Note: The figure depicts the long-run change in the adoption share, mT −m0, as a function of the
productivity shock ε1. Se text for details.

Figure C.13: Permanent impact on adoption share as a function of shock size

Note: The figure depicts the long-run change in the adoption share, mT −m0, as a function of the
productivity shock ε1. Se text for details.
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D Monte Carlo results for semi-nonparametric impulse
response estimators

This Appendix shows a simple Monte Carlo experiment in which a semi-nonparametric local
projection estimator is computed to obtain the impulse response of the following cubic data
generating process

yi,t = ρyi,t−1 + ε3i,t , (34)

where ρ = 0.9. Figure 12 shows the implied cumulative impulse response function
depending on the shock εi,t twelve periods after impact, along with Monte Carlo averages
from estimates of using a local polynomial regression based on an Epanechnikov kernel, for
samples of 100, 1000, and 5000 observations. Each experiment is repeated one thousand times.
Results indicate that finite sample biases are lower for the 5000 observations sample, which is
a size similar to that of the sample used in the semi-nonparametric estimations of subsection
3.3.

Figure D.14: Non-parametric estimates of cubic processes at a long horizon
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E Semi-nonparametric local projection estimates

Figure E.15: µ̂12 - Mean function estimates - Full sample

Note: Local polynomial regression based on an Epanechnikov kernel. The shock variable was trimmed
at the 1st and 99th percentiles. Sample 1893-2002 (5640 observations, war periods excluded).
Source: Author’s calculations

Figure E.16: µ̂12 - Mean function estimates - High capital intensity sample

Note: Local polynomial regression based on an Epanechnikov kernel. The shock variable was trimmed
at the 1st and 99th percentiles. Sample 1893-2002 (2782 observations, war periods excluded).
Source: Author’s calculations

vii



Figure E.17: R̂ (12, ε) - Alternative polynomial smoothing - Full sample

Note: Response of technological adoption to a TFP shock. Local polynomial regression based on an
Epanechnikov kernel. Each line corresponds to a different value of the kernel half-bandwidth (see
legend). The shock variable was trimmed at the 1st and 99th percentiles. Sample 1893-2002 (5640
observations, war periods excluded).
Source: Author’s calculations

Figure E.18: R̂ (12, ε) - Alternative polynomial smoothing - High capital intensity
sample

Note: Response of technological adoption to a TFP shock. Local polynomial regression based on an
Epanechnikov kernel. Each line corresponds to a different value of the kernel half-bandwidth (see
legend). The shock variable was trimmed at the 1st and 99th percentiles. Sample 1893-2002 (2782
observations, war periods excluded).
Source: Author’s calculations
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Figure E.19: Hairplots dropping each country one at a time - Full sample

Note: The dashed gray lines represent esimates, dropping each country one at a time. Local
polynomial regression based on an Epanechnikov kernel. The shock variable was trimmed at the 1st
and 99th percentiles. Sample 1893-2002 (5640 observations, war periods excluded).
Source: Author’s calculations

Figure E.20: Hairplots dropping each country one at a time - High capital intensity
sample

Note: The dashed gray lines represent esimates, dropping each country one at a time. Local
polynomial regression based on an Epanechnikov kernel. The shock variable was trimmed at the 1st
and 99th percentiles. Sample 1893-2002 (2782 observations, war periods excluded).
Source: Author’s calculations
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Figure E.21: Hairplots dropping each technology one at a time - Full sample

Note: The solid black line denotes estimates using the full high capital intensity sample, and the
dashed gray lines estimates dropping each technology one at a time. Local polynomial regression
based on an Epanechnikov kernel. The shock variable was trimmed at the 1st and 99th percentiles.
Sample 1893-2002 (5640 observations, war periods excluded).
Source: Author’s calculations

Figure E.22: Hairplots dropping each technology one at a time - High capital
intensity sample

Note: The solid black line denotes estimates using the full high capital intensity sample, and the
dashed gray lines estimates dropping each technology one at a time. Local polynomial regression
based on an Epanechnikov kernel. The shock variable was trimmed at the 1st and 99th percentiles.
Sample 1893-2002 (2782 observations, war periods excluded).
Source: Author’s calculations
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Figure E.23: Hairplots dropping successive 5-year windows each time - Full sample

Note: The solid black line denotes estimates using the full sample, and the dashed gray lines
estimates dropping one consecutive 5 year period at a time. The blue line excludes the Great
Depression period. Local polynomial regression based on an Epanechnikov kernel. The shock variable
was trimmed at the 1st and 99th percentiles. Sample 1893-2002 (5640 observations, war periods
excluded).
Source: Author’s calculations

Figure E.24: Hairplots dropping successive 5-year windows each time - High capital
intensity sample

Note: The solid black line denotes estimates using the full high capital intensity sample, and the
dashed gray lines estimates dropping one consecutive 5 year period at a time. The blue line excludes
the Great Depression period. Local polynomial regression based on an Epanechnikov kernel. The
shock variable was trimmed at the 1st and 99th percentiles. Sample 1893-2002 (2782 observations,
war periods excluded).
Source: Author’s calculations
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Figure E.25: R̂ (12, ε) - Expanded controls - High capital intensity sample

Note: 6 lags of all controls including dependent and shock variables. Additional controls: total
outstanding credit, world GDP, government expenditure as percentage of GDP. Response of
technological adoption to a TFP shock. Local polynomial regression based on an Epanechnikov
kernel. The shock variable was trimmed at the 1st and 99th percentiles. Sample 1897-2002
(2,782 observations, war periods excluded).
Source: Author’s calculations
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F Welfare analysis for alternative parameter values

Figure F.26: Welfare analysis of subsidizing technological costs - Alternative A

Note: The figure depicts welfare in the decentralized economy, and under a planner that subsidizes
the cost of operating the modern technology in the shock period, in order to maintain the initial
(pre-shock) level of adoption. Parameter values are calibrated to match the empirical relationship
presented in Figure 8, except for A, which is set to 1.3. See Section 4 for details.

Figure F.27: Welfare analysis of subsidizing technological costs - Alternative σ

Note: The figure depicts welfare in the decentralized economy, and under a planner that subsidizes
the cost of operating the modern technology in the shock period, in order to maintain the initial
(pre-shock) level of adoption. Parameter values are calibrated to match the empirical relationship
presented in Figure 8, except for σ, which is set to 2.725. See Section 4 for details.
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Table F.27: Welfare under planner and in decentralized economies for select his-
torical episodes

Country Year TFP growth (YOY) Planner Decentralized

Belgium 1932 -3.11 -1.15 -1.38
Denmark 1925 -4.23 -1.66 -2.41
Denmark 1932 -4.2 -1.66 -2.41
Denmark 1980 -3.02 -1.1 -1.28
Finland 1899 -3.34 -1.29 -1.67
Finland 1932 -4.36 -1.75 -2.6
France 1910 -4.86 -1.97 -3.03
France 1932 -4.17 -1.66 -2.41
Italy 1927 -3.3 -1.24 -1.57
Italy 1930 -4.46 -1.79 -2.68
Italy 1936 -4.92 -1.97 -3.03
Italy 1975 -3.77 -1.48 -2.05
Netherlands 1931 -6.02 -2.43 -3.92
Netherlands 1934 -4.45 -1.79 -2.68
Netherlands 1938 -4.72 -1.88 -2.86
Norway 1931 -4.99 -2.01 -3.12
Portugal 1983 -4.54 -1.79 -2.68
Spain 1910 -4.64 -1.84 -2.77
Spain 1930 -5.71 -2.31 -3.69
Spain 1931 -4.82 -1.92 -2.95
Sweden 1932 -3.63 -1.38 -1.86
Switzerland 1894 -4.95 -2.01 -3.12
Switzerland 1901 -3.92 -1.52 -2.14
Switzerland 1903 -3.55 -1.38 -1.86
Switzerland 1908 -4.39 -1.75 -2.6
Switzerland 1913 -3.06 -1.15 -1.38
Switzerland 1975 -4.92 -1.97 -3.03
UK 1926 -4.02 -1.57 -2.23
UK 1931 -4.8 -1.92 -2.95
USA 1896 -4.2 -1.66 -2.41
USA 1908 -4.64 -1.84 -2.77
USA 1920 -5.65 -2.27 -3.61
USA 1925 -5.92 -2.39 -3.84
USA 1930 -3.83 -1.48 -2.05

Note: Each year corresponds to TFP growth that would imply an statistically significant effect on
technological adoption, corresponding to the high capital intensity sample in Figure 8. Welfare values
correspond to those of Figure 11.
Source: Author’s Calculations.
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